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Abstract. Groundwater monitoring and specific collection of
data on the spatiotemporal dynamics of the aquifer are pre-
requisites for effective groundwater management and deter-
mine nearly all downstream management decisions. An op-
timally designed groundwater monitoring network (GMN)
will provide the maximum information content at the min-
imum cost (Pareto optimum). In this study, PySensors, a
Python package containing scalable, data-driven algorithms
for sparse sensor selection and signal reconstruction with
dimensionality reduction is applied to an existing GMN
in 1D (hydrographs) and 2D (gridded groundwater contour
maps). The algorithm first fits a basis object to the training
data and then applies a computationally efficient QR algo-
rithm that ranks existing monitoring wells (for 1D) or suit-
able sites for additional monitoring (for 2D) in order of im-
portance, based on the state reconstruction of this tailored
basis. This procedure enables a network to be reduced or
extended along the Pareto front. Moreover, we investigate
the effect of basis choice on reconstruction performance by
comparing three types typically used for sparse sensor se-
lection (i.e., identity, random projection, and SVD, respec-
tively, PCA). We define a gridded cost function for the
extension case that penalizes unsuitable locations. Our re-
sults show that the proposed approach performs better than
the best randomly selected wells. The optimized reduction
makes it possible to adequately reconstruct the removed hy-
drographs with a highly reduced subset with low loss. With
a GMN reduced by 94 %, an average absolute reconstruction
accuracy of 0.1 m is achieved, in addition to 0.05 m with a
reduction by 69 % and 0.01 m with 18 %.

1 Introduction

Groundwater is a vital resource for drinking water supply and
industrial, commercial, and agricultural uses. Therefore, ef-
fective groundwater management and monitoring practices
are critical to ensure the availability and quality of water sup-
plies for future generations. A groundwater monitoring net-
work (GMN) is defined by a spatial arrangement of ground-
water monitoring wells and a temporal sampling frequency
(Loaiciga et al., 1992). In most cases, there are economic
interests behind groundwater management and thus also be-
hind a monitoring network. As a result, while many monitor-
ing networks meet the basic requirements for groundwater
management, they are scientifically insufficient to monitor
aquifer dynamics. Considering monitoring costs and moni-
toring quality (i.e., the information gained by monitoring) as
axes in a two-dimensional coordinate system, optimal GMNs
lie along a Pareto front on which the maximum information
content is achieved for the respective budget. Moreover, ex-
isting GMNSs are usually grown historically regarding the lo-
cations and number of monitoring wells and are therefore
primarily inefficient. This means that the monitoring quality
is relatively low for the given costs. Thus, optimization could
reduce the operating costs without loss of monitoring quality
by optimizing the monitoring network regarding the number
of wells and their location (Emmert et al., 2016). Further-
more, directives such as the European Water Framework Di-
rective (WFD; EC, 2000) or the European Nitrates Directive
(ND; EC, 1991) demand the integration of regional monitor-
ing networks into national or international networks. Select-
ing a reasonable subset of these networks capable of captur-
ing the dynamics of the groundwater body is an essential and
challenging task.
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Usually, GMNs are classified according to their purpose
into a groundwater quality monitoring network (GQMN),
i.e., mostly multivariate, and groundwater quantity/ground-
water level monitoring network (GLMN), i.e., univariate.
This classification does not preclude a GMN from perform-
ing both tasks. However, optimization approaches usually ad-
dress one of the two tasks. To date, there are neither standard
regulations for the planning and expansion of existing GMNs
nor established methods. Instead, a high degree of subjec-
tivity prevails. In the last few decades, many studies have
been published dealing with the optimization of GMNs. The
widely varying requirements for optimizing monitoring net-
works led to various approaches that attempt to meet these
requirements differently. The choice of method usually de-
pends on the GMN type (GQMN vs. GLMN), scale (local,
regional, and national), uni- or multivariate network, opti-
mization strategy (extension of GMN vs. reduction of redun-
dant wells), consideration of dynamics (spatial vs. spatiotem-
poral), and, last, purpose of the monitoring network. With
the latter, a distinction is usually made between risk-oriented
monitoring (mainly concerning groundwater quality in the
catchment of waterworks) and surveillance monitoring, e.g.,
according to the European WFD.

In general, the design of a monitoring network is con-
sidered a nonlinear and non-convex optimization problem
whose optimal criterion measures the useful information
contained in the information matrix of the design (Ushi-
jima et al., 2021). GMN optimization approaches are com-
monly divided into the following three categories based on
the techniques applied: (a) those based on hydrogeologi-
cal conceptual models and hydrogeological expert knowl-
edge, (b) those based on numerical groundwater flow mod-
els (Kim and Lee, 2007; Singh and Datta, 2016; Thakur,
2017; Sreekanth et al., 2017), and (c) those based on data
analysis with (geo-)statistical techniques. Many studies have
focused on the geostatistical ability of kriging frameworks
to determine new monitoring wells based on the reduction
of estimation variance as the optimization criterion (Nunes
et al,, 2004; Li et al., 2011; Varouchakis and Hristopu-
los, 2013; Bhat et al., 2015; Thakur, 2015; Ohmer et al.,
2019). With the steady increase in computational capacity
in recent years, there are a growing number of studies that
tackle these optimization problems using traditional data-
driven heuristic optimization criteria such as genetic algo-
rithms (GAs; Dhar and Patil, 2012; Reed and Kollat, 2013;
Khader and McKee, 2014; Puri et al., 2017; Pourshahabi
et al., 2018; Ayvaz and Elci, 2018; Yudina et al., 2021; Ko-
masi and Goudarzi, 2021), artificial neural networks (ANNSs;
Alizadeh et al., 2018), particle swarm optimizations (Gaur
et al., 2013; Guneshwor et al., 2018; De Jesus et al., 2021),
support vector machines (Asefa et al., 2004; Bashi-Azghadi
and Kerachian, 2010, SVMs;) and relevance vector machines
(RVMs; Khalil et al., 2005; Ammar et al., 2008), or a com-
bination of these approaches. Further studies use entropy-
and information-theory-based approaches (Hosseini and Ker-
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achian, 2017; Keum et al., 2017; Alizadeh and Mabhjouri,
2017) and Kalman filtering (KF; Kollat et al., 2011; Jinez-
Ferreira et al., 2016).

In most of the mentioned studies, the optimization of the
GMN amounts to a computationally intensive combinatorial
search with innumerable multi-dimensional iteration steps,
since many complex physical systems are described by a
high-dimensional state [x € R"]. Moreover, improved data
recording and increasing storage leads to fast and strongly
growing system complexities and, therefore, to increased
computing time beyond Moore’s law (Moore, 1998). How-
ever, the dynamics of such complex systems often evolve on
a low-dimensional attractor, which can be used to predict and
control these systems. Pattern extraction is associated with
the search for coordinate transformations that simplify the
system dynamic and the computational effort (Brunton and
Kutz, 2017). In recent years, powerful new techniques in data
science have been developed that are capable of analyzing
complex data and extracting essential features and correla-
tions from high-dimensional dynamic systems. Sparse sam-
pling (Candes et al., 2005; Candes and Wakin, 2008; Bara-
niuk, 2007), sparse reconstruction (Yildirim et al., 2009; An-
noni et al., 2018; Castillo and Messina, 2020), and sparse
classification (Brunton et al., 2016) enable the recovery of
relevant information from remarkably few measurements.
Although sparse sampling, such as compressed sensing, is
a common and powerful method often used in other fields
of science including seismic and medical image processing,
fluid dynamics, or remote sensing, to our knowledge, there
are only a few studies in the field of hydrogeology that ap-
plied sparse sensing for hydrogeological tasks. Hussain and
Muhammad (2013) utilized sparse signal extraction methods
based on /1 norm minimization to exploit the spatial spar-
sity in hydrodynamic models and thereby reduce the number
of measurements needed to reconstruct the signal. Lee et al.
(2021) used compressed sensing for generating groundwater
level (GWL) contour maps based on sparsely sampled or in-
complete data from a groundwater model below the Nyquist—
Shannon sampling criterion (Shannon, 1949). They found
that compressed sensing performed much better compared to
traditional interpolation methods such as kriging. Ushijima
et al. (2021) developed an experimental design algorithm to
select locations for a network of monitoring wells with max-
imum information. The combinatorial search was performed
with a GA combined with a proper orthogonal decomposi-
tion (POD) to reduce the computational cost of using the GA.
POD, which is often formulated using the singular value de-
composition (SVD), is a dimensionality reduction method
that extracts relevant large coherent structures/patterns (low-
dimensional features) from high-dimensional data (Pollard
etal., 2017).

This study focuses on a data-driven algorithm to optimize
a GMN regarding the number and locations of monitoring
wells for temporal and spatial GWL reconstruction. The al-
gorithm uses data-driven sparse-sensing techniques and a
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QR-based sensor placement algorithm that ranks sensors,
in our case monitoring wells, according to their informa-
tion content. It is based on work by de Silva et al. (2021a),
Manohar et al. (2018), and Clark et al. (2019), implemented
in the PySensors package, and has, e.g., been successfully ap-
plied in a similar context of sensor placement for sea surface
temperature reconstruction, fluid flow data (Manohar et al.,
2018; Clark et al., 2019), and wind flow data (Annoni et al.,
2018), as well as for classification tasks in, e.g., image recog-
nition or cancer classification by microarrays (Brunton et al.,
2016). We have adapted this methodology for the first time
for the application to GMN, as we see the following advan-
tages over existing methods: (i) it can simultaneously take
spatial and temporal information into account, (ii) it allows
the ranking of existing monitoring wells based on their in-
formation content, (iii) based on the ranking, an existing net-
work can be reduced, while the values either of the aban-
doned wells or a spatially continuous GWL can be recon-
structed, (iv) it proposes locations for an extension of a net-
work that account for the best possible gain in knowledge,
and (v), if necessary, allows the application of a cost function
for the extension of the network (Clark et al., 2019), either to
prefer more suitable locations (e.g., in terms of infrastruc-
ture) or to exclude certain areas (like inaccessible terrains,
steep slopes, etc.).

We apply the adapted algorithm to a real-world GLMN to
demonstrate its suitability for groundwater monitoring net-
works in general. The data set used for this purpose consists
of weekly GWL monitoring between 1990 and 2015 from
480 monitoring sites in the Upper Rhine Graben (URG)’s up-
per alluvial aquifer. In particular, we show how the algorithm
can be applied to address the following questions regarding
the optimization of an existing network:

What is the ranking of monitoring wells in an exist-
ing network in terms of their information content/recon-
struction performance, i.e., in which order should the
wells be removed if a network reduction is desired?

— How does the reconstruction/interpolation error vary as
wells are progressively removed from the monitoring
network in the order of the proposed ranking, and how
does this compare to the removal of randomly selected
wells?

— When the goal is network extension, where should new
wells be placed for maximum information gain? How
significant is the increase in information, i.e., how much
will the spatial reconstruction error be reduced?

— How well does a combined reduction/extension (i.e., re-
placement) of a certain number of wells perform com-
pared to a straightforward extension?

https://doi.org/10.5194/hess-26-4033-2022

2 Methodology
2.1 Mathematical background
2.1.1 Compressed sensing

Most multi-dimensional natural signals are compressible (re-
spectively, sparsely representable). That means that when the
signals are transformed into a convenient coordinate system
(basis), only a limited number of basis modes are active.
These basis modes correspond to the large mode amplitudes
(Brunton and Kutz, 2017). In data compression, for exam-
ple, JPEG or MP3 file compression, only these values are
stored to efficiently reconstruct the input signal with a con-
siderable reduction in data size and little loss of information.
A compressible signal x € R” can be written as a sparse vec-
tor s € R” on a new orthonormal basis of ¥ € R"*" such
that, in the following:

x = Ws. (D

Vector s is K sparse if it is a linear combination of only K ba-
sis vectors (exactly K nonzero elements). The theory of com-
pressed sensing uses this principle as it attempts to infer the
sparse representation s in a known transformed basis system
with a very small, low-dimensional (compressed) subsample.

y =Cx = (C¥)s = Os, (2)

where the vector y € R? is a set of incoherent observations
and C € RP*" an observation matrix of p linear observa-
tions. © is the condition number. The objective of com-
pressed sensing is to find the /; norm of the sparsest vector §
(under a set of conditions) that is consistent with y, as fol-
lows:

s = argming/ s’||l such that y = @s’, 3)
which almost certainly ends up with the sparsest possible so-
lution for s (Candes et al., 2005; Candes and Wakin, 2008;
Donoho, 2006; Baraniuk, 2007).

2.1.2 Sparse sensor placement

While compressed sensing uses random measurements to re-
construct high-dimensional unknown data from a universal
basis ¥ € R"*", a data-driven sparse sensor placement col-
lects available information about a signal from observed sam-
ples to build up a tailored basis W, € R"*” for the respective
signal and thus to identify optimal sensor placements for the
reconstruction of this signal with low losses. Let the full sig-
nal be an unknown linear combination of basis coefficients
a € R" (vector of mode amplitudes of x in basis ¥) as fol-
lows:

x=) Yra=Va. )
k=1
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The central challenge is to design a incoherent (i.e., rows
of C not correlated with columns ¥ of ¥,) measurement ma-
trix C that allows us to identify the optimal p observations y;
to accurately reproduce the signal x, as follows:

y= Cx = (C\Ilr)a = Oa. (5)

For n sensor observations and a given p sensor budget, the
sampling matrix C must be structured as follows:

C= [eyleyz...eyp]T. (6)

Here e € R" are the canonical basis vectors with a unit entry
at index j and zeros elsewhere. Thus, each row of C only
observes from a single spatial location corresponding to the
sensor location. The observations are made up of p elements
selected from x,

y=Cx=[x,1x2...5,,], @)

with € N? as an index set of the sensor locations that des-
ignates the index with cardinality |y| = p and, additionally,
the number of sensors n > r of ¥ for a well-defined linear
inverse problem (Manohar et al., 2018). The unknown x can
thus be reconstructed by approximating @ with the Moore—
Penrose pseudoinverse of Eq. (5) to the following:

C* = argmin|x — ¥ (CW¥)"y|3, (®)
CeRpxn

where { denotes the Moore—Penrose pseudoinverse. It is as-
sumed that optimal sensor selection C* is mostly a sparse
subset selection operator, and the nonzero entries in the rows
represent the monitoring wells.

2.1.3 Tailored basis ¥,

As described above, in data-driven sparse sensing, the univer-
sal basis ¥ is replaced by a tailored basis ¥, which is built
from the training data XY, e.g., by using dimensionality re-
duction techniques. In this study, we are using the following
three basis types which are typically used for sparse sensor
selection:

— Identity basis. Centered raw data are used directly with-
out dimensionality reduction. ¥, = X". Since no low-
rank approximation of the data is performed, no infor-
mation is lost. However, this comes at the cost of a
longer computation time (de Silva et al., 2021a).

— Random projection basis. Dimensionality is reduced by
projecting the input data onto a randomly generated ma-
trix W' = GX", where the entries G € R2P*"™ are drawn
from a Gaussian density function with mean zero and
variance 1/n (Dasgupta, 2000; Li et al., 2006).

— SVDlprincipal component analysis (PCA). Linear di-
mensionality reduction is performed using a truncated
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SVD. SVD is a numerically robust and efficient method
for extracting dominant patterns from a low dimension
(Golub and Kahan, 1965; Halko et al., 2011). For a ma-
trix X € C"*", the SVD is given by the following:

X=UZV! =¥V’ ~ ¥, 3,V where
UeR™, X eR™, VeR™, 9

The columns of ¥ are the left singular vector of X. They
are often termed as spatial correlations, principal com-
ponents, features, or POD modes of the data set. X is a
diagonal matrix.

2.1.4 QR pivoting for sparse sensors

While the previous steps serve to best fit the basis to the train-
ing data, the next steps aim to determine the resulting opti-
mal sensor locations that minimize the reconstruction error.
This optimization problem is solved using an approximate
greedy solution using reduced QR factorization with column
pivoting (Brunton and Kutz, 2017; Halko et al., 2011). The
QR factorization decomposes a matrix A € R”*" into a uni-
tary matrix Q and an upper-triangular matrix R and a col-
umn permutation matrix C (Eq. 6), such that ACT = QR.
The diagonal inputs of R are determined by a selection of
the pivot columns with maximum /; norm within all modes
in the library. Subsequently, the orthogonal projection of the
pivot column is then subtracted from all other columns, and
the process is iteratively repeated over all columns. Thus,
QR factorization with column pivoting yields » column in-
dices (which correspond to sensor locations) that best sample
the r basis modes (columns) \Ier .

v'c? =QR. (10)

Since the pivot columns represent the sensors, the QR fac-
torization results in a hierarchical list of all n pivots, where
the first p pivots are optimized for the reconstruction of W¥,.
This means that, in the GMN optimization based on hydro-
graph data, all monitoring wells are ranked based on their in-
formation content. When using spatial input data, e.g., from
interpolation or model results, all gridded input data cells are
ranked based on their information content. Thus, it allows
recommendations for the placement of additional monitoring
wells at locations with supposedly high information content.
The used QR decomposition approach includes a cost con-
straint function (Clark et al., 2019). This constraint allows
different costs to be considered when selecting sensor place-
ment, such as favoring or excluding certain areas.

2.2 Application cases

In principle, there are the following two possible applica-
tion cases of the algorithm regarding groundwater monitor-
ing data: (i) the application to the observed data at the wells
(i.e., hydrographs) only and (ii) the application of spatially
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continuous gridded information that has been regionalized
based on the well data (e.g., by interpolation). While the op-
timization based on hydrographs only serves to rank the in-
dividual wells of the network according to their information
content and thus to identify and eliminate redundant wells,
the spatially continuous input data also allow a GMN exten-
sion at optimal locations and the best possible reduction of
the spatial prediction error.

2.3 Error metrics

The calculation of the reconstruction error for a given set
of measurements is done using the root mean square error
(RMSE) for the scoring function. We further used the fol-
lowing metrics widely used for calibration and evaluation
of hydrological models: mean absolute error (MAE), Nash—
Sutcliffe efficiency (NSE), Kling—Gupta efficiency (KGE),
squared Pearson’s correlation coefficient (R?), and relative
bias (rBias). In the following equations, o stands for observed
values, r for the reconstructed values, cov is the covariance,
o is the standard deviation, w is the arithmetic mean, and
n stands for the number of measurements.

The RMSE is one of the most commonly used error in-
dex statistics. In general, the lower the RMSE, the better
the model performance. It is useful for comparing different
model performances for a given time series. However, only
the relative root mean square error (rRMSE) is meaningful
in comparing the model performance between different time
series.

n

1 2
—Y "loi —r;]* and
n

i=1

RMSE =

n R 2
rRMSE = lZ[A} (11)

n = Omax — Omin
Analogous to the RMSE, the smaller the MAE, the better the
performance, as follows:

1
MAE= - "o; —ril. (12)
n -«
i=1

The NSE (Nash and Sutcliffe, 1970) is a widely used good-
ness of fit measure of hydrologic models, as it normalizes
model performance into an interpretable scale (Knoben et al.,
2019). The NSE ranges between —oo and 1, where 1 indi-
cates a perfect correspondence between observations and re-
constructions, while a NSE = 0 indicates that the model has
the same explanatory power as ((0).

ﬁ: lo; — ri]?
NSE=1-————.
> [oi — (o)
i=l1

—_

13)
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The KGE (Gupta et al., 2009) was proposed as an alterna-
tive to the NSE because it addresses several shortcomings of
the NSE (Knoben et al., 2019). Like the NSE, a KGE=1
indicates a perfect model correspondence. However, explicit
statements on benchmark performance have varied so far.

KGE:1—\/[r—l]2+[a—1]2+[,3—1]zwith:
_ cov(o,r) _ o(r)

wu(r)
r= , 0= s —_—
o(0)o(r) o(0)

~ o)’

(14)

where r is the linear correlation between o and r, « is a mea-
sure of the variability error, and 8 is a bias term.

We use the squared Pearson r (Eq. 14) correlation coef-
ficient as a general coefficient R2. It describes the degree
of collinearity between measured and reconstructed data.
R? ranges from 0 to 1, with higher values indicating lower
error variance. In general, values above 0.5 are considered
acceptable.

2
R [M} , (15)

o(0)a(r)

The relative bias is a measure for a systematic over- or under-
estimation of a model. The optimal rBias is 0. Positive values
indicate model underestimation of bias; negative values indi-
cate model overestimation of bias. (Gupta et al., 1999).

O; —T;
—:| (16)

Omax — Omin

1 n
rBias = — |:
n“
i=1
Statements about model performance in Sect. 3 are based on
the Moriasi et al. (2007) guidelines for model evaluation.

2.4 Data and study area
2.4.1 Hydrogeological framework

The Upper Rhine Graben (URG), also known as Rhine Rift
Valley, is a 300 km long and, on average, 50 km wide struc-
tural trough. It was formed in the Oligocene in response to
the alpine orogenesis and subsequently filled with fluvial to
lacustrine sediments of the Late Miocene, Pliocene, and Qua-
ternary (Przyrowski and Schifer, 2015). The Pliocene and
Quaternary alluvial gravels and sands represent the largest
groundwater reservoir in central Europe (LUBW, 2006).
Based on their permeability and the appearance of fine-
grained horizons, the Pliocene and Quaternary gravels are
subdivided into three (locally also more) aquifers, partly sep-
arated by fine-grained sediments (Wirsing and Luz, 2007).
The study region is in the Baden-Wiirttemberg part of the
URG (Fig. 1). The Rhine forms the western boundary, and
the Kaiserstuhl volcano complex is the southern boundary.
To the east, the URG is bounded by a rift flank uplift com-
posed of a system of troughs and highs, which follow the
ENE structural grain of the Variscan fold belt (Derer, 2003).
Along the study area these are, from south to north, the Black
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Figure 1. Study area within the URG and the 480 groundwater mon-
itoring wells used for optimization. RLP — Rhineland-Palatinate; He
— Hesse; BW — Baden-Wiirttemberg; Al — Alsace (France); KS —
Kaiserstuhl volcanic complex.

Forest high, Kraichgau basin, and Odenwald—Spessart high.
Groundwater recharge occurs predominantly through lateral
inflow and infiltration of streams from the Black Forest val-
leys in the east, the Freiburg basin in the southwest, and the
infiltration of the Rhine and other surface waters.

2.4.2 Data and preprocessing

The data set used in this study consists of weekly GWL mea-
surements from 480 wells in the uppermost aquifer within
the Quaternary sand/gravel deposits of the URG, covering
the period from 1990 to 2015 (i.e., 1304 time steps). Data
values that deviate by more than +30 from the moving av-
erage (with a window size of 11 values) are considered out-
liers and were removed from further processing. Data gaps
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were subsequently filled based on information from highly
correlated neighboring hydrographs using the clustering re-
sults of Wunsch et al. (2022). Where this did not yield plau-
sible results or was not possible due to similarly missing data
in neighboring hydrographs, an alternative PCHIP (piece-
wise cubic hermite interpolating polynomial) interpolation
was performed. To avoid possible bias, the measurement data
are globally and locally centered. The data set is split into
the following two subsets: the first 80 % (January 1990-
December 2009; 1043 time steps) is used to train the algo-
rithm and the last 20 % for test/validation (January 2009—
December 2014; 261 time steps). The well data are publicly
available from the Baden-Wiirttemberg State Office for En-
vironment web service (LUBW, 2021).

2.4.3 Groundwater contour maps

We used the hydrograph data to generate 1304 weekly
groundwater contour maps with a grid size of 50 x 50m
using ordinary kriging. In addition to finding a sparse set
of monitoring wells for the optimal temporal reconstruction
of other hydrographs, the objective is to identify monitor-
ing wells that allow optimal spatiotemporal reconstruction
of GWL from a subset of the wells. Moreover, the spatially
continuous information of the gridded contour maps is used
to suggest additional locations for an extended network. We
used an isotropic Gaussian semivariogram model for inter-
polation, which is flexible and, therefore, a good candidate
for a standard model (Krivoruchko, 2011). The associated
parameters partial sill (42.7m), range (17853 m), lag size
(1485 m), and nugget (0.05m) were optimized using auto-
matic cross-validation (CV) diagnostics to achieve the low-
est mean square error. It should be noted that the use of a
single variogram model (Gaussian) may not be the optimal
way to quantify spatial correlation, especially for nonstation-
ary data. However, this is a necessary simplification due to
the automation process that still produces comparable inter-
polation results, while the best possible interpolation result is
not the focus of this study. Just as with the hydrographs, the
first 80 % (January 1990-December 2009; 1043 time steps)
of the contour maps were used to train the algorithm and the
last 20 % for test/validation (January 2009-December 2014;
261 time steps).

3 Results and discussion

The following section is structured as follows. First, the grid
search results regarding the three types of basis used, the
number of basis modes, and a varying number of sensors are
presented and discussed. Since we are applying the presented
sensor placement approach to a groundwater monitoring well
optimization, we use the term “well” as a synonym for sen-
sors in the following. This is followed by the results of the
GMN optimization based solely on the hydrograph data set.
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Finally, the results of the GMN optimization with the inter-
polated GWL as inputs are shown.

3.1 Grid search results

Figure 2a shows the RMSE between the estimated and actual
GWL for the validation set as a function of the number of
wells that the network is reduced to, the type of tailored ba-
sis (identity basis, random projection, and SVD basis), and
the number of basis modes used. Since the number of wells
and basis modes interacts, it is necessary to determine the ap-
propriate number of basis modes that will result in the lowest
reconstruction error for a given number of wells. If the num-
ber of wells is close to the number of basis modes, the recon-
struction error increases significantly for all three basis mode
types used. While the number of basis modes for identity and
random projection is theoretically open-ended, the dimen-
sionality for SVD, and thus the number of basis modes, must
be less than the number of wells. Although there are SVD
methods (e.g., randomized SVD; Halko et al., 2011) that al-
low oversampling with an additional number of random vec-
tors, our results show that the accuracy of SVD generally
decreases as the number of basis modes increases, which is
consistent with the findings of de Silva et al. (2021a). There-
fore, we decided against an SVD method with oversampling
and opted for the truncated SVD implemented in PySensors
(de Silva et al., 2021a), thus using a maximum of 480 basis
modes. All 1043 time steps (in the training set) were used as
the maximum number of basis modes for identity and ran-
dom projection. According to previous studies, the number
of basis modes should be at least equal to the number of
wells p 4+ 10 (de Silva et al., 2021a). Clark et al. (2019) used
2 p basis modes, which in our case equals a maximum of 960
(for all 480 wells) and, thus, is covered by the maximum of
1043 basis modes in the grid search.

The results show that, with only a few basis modes, SVD
has the highest accuracy (Fig. 2a). As the number of basis
modes exceeds the number of remaining wells, the identity
and random projection basis perform better. In general, ran-
dom projection and identity basis perform similarly. With
fewer than 950 basis modes, slightly better results are ob-
tained with random projection; above 950, the identity ba-
sis performs marginally better. Figure 2b shows the lowest
RMSE per number of wells achieved in the grid search, and
Fig. 2c shows the corresponding number of basis modes. The
gray dashed line in Fig. 2b shows the median of reconstruc-
tion errors from 100 iterations, with a random well selec-
tion as a benchmark. Except for SVD basis with fewer than
50 wells, all three basis types perform considerably better
compared to reconstruction with the randomly placed wells
and independently of the number of wells. Our findings are
consistent with those of Manohar et al. (2018), Clark et al.
(2019), and de Silva et al. (2021a), where SVD consistently
underperforms compared to random projection and identity
basis. However, the latter two show almost identical results
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with an optimized number of basis modes (Fig. 2b), with ran-
dom projection performing marginally better with a small
number of wells and identity basis performing slightly bet-
ter with a larger number of wells. For consistency reasons,
and based on the grid search results, we decided to compute
the optimization steps shown in the following uniformly with
identity basis and a fixed number of 1043 basis modes. This
combination, on average, shows the best results for any cho-
sen number of remaining wells (Fig. 2c).

As examples, all results of the following section are pre-
sented using five reduction stages: 10 %, 25 %, 50 %, 75 %,
and 90 %. Thus, in the 25 % stage, the 25 % wells with the
lowest information content are removed, and their hydro-
graphs are predicted using the remaining optimal 75 % of the
monitoring wells. The reduction stages are also shown in the
grid search results (Fig. 2b and c). The color scheme of the
reduction stages is kept for all remaining figures.

3.2 Ranking of wells and network reduction with
hydrograph data

Figure 3 shows the result of the ranking of the monitoring
wells computed with an identity basis and using 1043 basis
modes. The ranks are assigned from 1 (essential well with
high information content) to 480 (most redundant well); thus,
lower numbers mean a higher ranking concerning their in-
formation content and importance to reconstructing poten-
tially removed redundant wells. The reduction stage at which
the respective wells are removed is indicated in parenthe-
ses. The color scheme ranges from dark red for redundant
monitoring wells that can be eliminated with a minor loss
in prediction accuracy to dark blue for important monitor-
ing wells that contain essential information about the system
and are needed for the accurate reconstruction of signals at
other monitoring wells. In addition, Fig. 4 shows the cen-
tered hydrographs of the most important 10 % and the most
redundant 10 % of all hydrographs. Most of the important
wells (blue; removal at a reduction of > 90 %) show a pro-
nounced flashiness (i.e., high frequency and rapidity of short-
term changes) and strong irregular patterns during the record-
ing period. These dynamics indicate a strong interaction with
surface waters or boundary inflows, for example, from side
valleys of the rift flanks, which can also be seen in Fig. 3
from the location of the wells. Additionally, the most im-
portant wells include those with a distinct trend, which can
be best seen for the two highest-ranked wells at the bottom,
showing an upward trend over the considered period.

In contrast, the redundant wells show low flashiness and
also include wells with high seasonality, though most of the
signals seem to be dominated by interannual variations. Most
of these wells are located in the northern part of the study
area within the URG. Since the eastern boundary in this
area is the Kraichgau basin, the landscape profile is less pro-
nounced than in the Black Forest hill range in the south and
the Odenwald in the north. Therefore, less recharge occurs
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Figure 2. Grid search CV results. (a) Reconstruction error (RMSE) vs. the number of monitoring wells and the number of basis modes for the
three basis projections described in Sect. 2.1.3, i.e., identity (¥; = X'), random projection (¥; = GX¥), and SVD (¥, = U™). (b) Minimum
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Figure 4. Stacked z-transformed hydrographs of the 10 % most important monitoring wells (blue; panel b) and the 10 % most redundant
monitoring wells (red; panel a). Coloring and stacked order reflect the ranking order.

through stream infiltration, which is often the reason for more
pronounced short-term variations or flashiness. The hydro-
graphs of all wells can be found in the Appendix. Overall,
the ranking shows that the most important wells include the
ones with a noticeable unusual behavior, i.e., patterns that
are not present in many of the other wells (like flashiness,
trends, and jumps) and thus are hard to reconstruct. Overall,
the more redundant wells either show a higher seasonality or
tend to show low variability. Both patterns are common to
a larger number of the wells and can be reconstructed more
easily.

While the ranking itself already contains essential infor-
mation and could be used, for example, to equip higher-
ranked monitoring wells with higher-quality sensors or mea-
sure them with a higher time frequency, we use the ranks
here to reduce the original network well by well, with most
of the results shown only for the five abovementioned reduc-
tion stages, i.e., GMN reduction by 10 %, 25 %, 50 %, 75 %,
and 90 %.

The upper part of Fig. 5 shows the development of the pre-
diction accuracy of the GMN reduction for the error mea-
sures NSE, KGE, and R2 (left), as well as rBias, RMSE, and
MAE (right), for the validation data set (mean and ranges of
the reconstructed validation period of all predicted/removed
wells). Even with only a few optimally selected wells, the
predictive power is considerably higher than the mean value

https://doi.org/10.5194/hess-26-4033-2022

of the time series (NSE=0). An average performance for
the validation period of all predicted removed wells rated
as satisfactory (NSE > 0.5) is already achieved with only
nine remaining wells (corresponds to a reduction of 98.1 %),
those rated as good (NSE > 0.65) with 21 remaining wells
(95.6 %), and those rated as very good (NSE > 0.75) with
54 remaining wells (88.7 %). With more than 191 wells
(60.2 %), the NSE rises above 0.9. KGE and R? behave in
much the same way as NSE. A KGE of 0.75 is achieved
with nine wells (98.1 %) and 0.9 with 144 wells (70.0 %).
R? of 0.75 is achieved with 22 wells (95.4 %) and of 0.9 with
155 wells (67.7 %), respectively. A MAE of 0.1 m is achieved
with 31 monitoring wells (93.5 %) remaining, 0.05 m with
147 wells (69.4 %), and 0.01 m with 394 wells (17.9 %).
From a reduction of more than about 75 %, the removal of
each subsequent well leads to a disproportionate decrease
in accuracy, with a very steep drop from about 95 % on.
When the reduction is less than 75 %, the gradient shows
a nearly linear course, meaning a linear (but small) perfor-
mance increase with more monitoring wells. The rBias also
approaches zero at a reduction below 75 %. Thus, we con-
clude that about 25 % of the wells could be seen as a kind
of absolute minimum that is required to adequately describe
the system dynamics in the considered study area, despite the
average NSE of the reconstruction still being rated as good
for only the optimally selected 10 % of the wells.
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errors over all removed wells). (b) Same reconstruction error metrics with a GMN reduction of 10 %, 25 %, 50 %, 75 %, and 90 %, as
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The lower part of Fig. 5 displays the performance of the
QR-optimized wells compared to an equal number of ran-
domly selected remaining wells for a reduction by 10 %
(48 wells) to 90% (432 wells) of the GMN. Removing wells
based on the ranking results leads to a lower prediction loss.
Only at a reduction of more than 90 % are the errors in the
same range as for the randomly removed wells. Therefore,
the information content of these 10 % remaining wells is
probably not sufficient to reflect the overall dynamics. Again,
from about 75 % downwards, the performance differences
become more pronounced, with a considerably higher aver-
age, 25 % quantile, and minimum NSE, KGE, and R? val-
ues (lower MAE and RMSE, respectively). Below a reduc-
tion of 25 %, the 75 % quantile and minimum NSE, KGE,
and R? values are also clearly higher (lower for MAE and
RMSE, respectively). This clearly shows that the advantages
of the data-driven optimization method come into play, espe-
cially for moderate to smaller reductions of a GMN.
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Figure 6 shows the temporal reconstruction accuracy at the
considered reduction stages from 10 % to 90 % for eight se-
lected wells (see also Fig. 3). These wells were chosen to
reflect the dynamics spectrum and represent the full rank-
ing range. The reconstruction is always based on the higher-
ranked remaining wells (but keeping the chosen reduction
stages). Consequently, well 154-304-1, the highest-ranked
well shown with rank 59 (bottom), which could theoreti-
cally be reconstructed with a maximum of 58 remaining
wells, is reconstructed with 10 % of the wells (48). Similarly,
well 132-257-4, the lowest-ranked well with rank 478 (top),
which could theoretically be reconstructed with a maximum
of 477 wells, is reconstructed with 90 %, 75 %, 50 %, 25 %,
and 10 % remaining wells (432, 360, 240, 120, and 48, re-
spectively) for a comparison.

The results show that the individual dynamics of the hy-
drographs can already be adequately reconstructed with a
10 % subset of the monitoring network. As expected, as the

https://doi.org/10.5194/hess-26-4033-2022
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error measures.
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number of wells increases, the accuracy improves on av-
erage, hydrographs are reproduced more consistently, and
short-term peaks are reproduced more accurately. Though
these seem to be only, comparatively, slight improvements,
considering the overall dynamics for some wells and time
steps, the absolute errors can be up to several tens of cen-
timeters, albeit achieved by many additional wells. Whether
this justifies the increased operating costs of the monitoring
network depends on the task at hand. The reconstruction re-
sults for the other wells can be found in the Appendix.

3.3 Network reduction and extension based on gridded
GWL contour maps

This application case is based on spatially continuous grid-
ded weekly GWL contour maps from 1990 to 2015. Anal-
ogous to the hydrograph data set, the first 80 % of this pe-
riod was used for model training and the last 20 % for eval-
uation. According to the ranking, we investigate how well
the GWL can be reconstructed with two reduction stages in
which 10 % and 20 % of the GMN are removed. We have se-
lected these reduction stages since, in the analysis of the re-
duction stages with hydrographs, the advantages of the data-
driven optimization method were more pronounced for mod-
erate to smaller reductions of a GMN. Moreover, reducing
an existing network by more than 20 % seems unrealistic
in practice. Furthermore, we extend the existing network by
10 % and 20 % wells and analyze where new wells are placed
to supposedly improve the GMN. To account for more or
less suitable locations (e.g., with regard to infrastructure),
we apply costs with a non-uniform spatial step function on
a 50 x 50 grid (corresponding to the used GWL grid) into
the QR factorization. The cost function grid is assigned zero
(no additional costs) at existing monitoring well locations to
ensure that existing wells remain since, technically, the ex-
tension (by e.g., 10 %) is realized such that 110 % of new
wells are placed on the gridded GWL maps. At potentially
well-suited additional sites, which are defined within 50 m of
roads and paths, outside surface waters, and where the slope
is less than 20 %, we assigned a cost value of 21. For all other
areas that are considered as not suitable, the cost weight-
ing is set to 22. Alternatively, a gradual cost function can
be used, where the weighting increases with distance to the
infrastructure or similar. It should be noted that the weight-
ing depends on the system, basis, and cost function and must
be adjusted for the particular case (Clark et al., 2019). We
assigned the mentioned weighting factors iteratively until it
resulted in the desired behavior. With the weightings chosen
in this way, it was possible to achieve a result such that the
first 480 wells are placed at existing monitoring wells, and
all subsequent wells are placed at suitable locations, while
the algorithm avoids the other locations. Finally, we com-
bine a reduction/extension scenario, where the original num-
ber of wells is kept, but the 10 % and 20 % most redundant
wells are removed and replaced afterward. Technically, this
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is done in a two-step procedure, consisting of the reduction
step followed by the above-described extension, where the
cost function is adapted for the existing wells.

The maps on the left side of Fig. 7a show the spatial distri-
bution of the monitoring wells as a result of a 10 % (yellow
dots) and 20 % (red dots) reduction (1), and a 10 % (light blue
dots) and 20 % (dark blue dots) extension (2) of the GMN, as
well as a combined reduction/extension of the GMN (3). For
the latter, redundant 10 % and 20 % monitoring wells were
eliminated and replaced with wells at optimal locations. We
should note that the ranking based on the spatially interpo-
lated data is different from the ranking based on the hydro-
graphs alone (see Appendix A).

This variation can be explained by the ranking reflecting
the information content regarding the reconstruction with the
lowest possible error. While, in the case of hydrographs, the
goal is to reconstruct the hydrographs of the removed wells,
here the goal is to reconstruct the interpolated surface (which
constitutes a best guess of spatially continuous GWL based
on the available data).

While the first 10 % of reduced wells are evenly distributed
across the study area, the subsequent removal step (i.e., ad-
ditional 10 %; thus, 20 % removed wells in total) eliminates
well clusters in the central and northern regions. This seems
conclusive because clusters of nearby wells tend to show
similar dynamics and thus do not add much information to
an interpolation, according to Tobler’s law. Optimal loca-
tions for additional wells are identified primarily along the
western and eastern margins, i.e., along the Rhine and down-
stream of the alluvial valley aquifers of the adjacent Black
Forest. These are areas with expected higher groundwater dy-
namics (e.g., high seasonal magnitudes and high flashiness)
and, on the other hand, due to the elongated geometry of the
URG, areas with increased interpolation uncertainty (transi-
tion from interpolation to extrapolation). Optimal well loca-
tions are primarily, but not exclusively, located in areas of
increased variability (standard deviation of the interpolated
GWL,; see Fig. 7a; and a3).

The box plots in Fig. 7c show the mean (left) and max-
imum (right) absolute error of the reconstructed 261 GWL
contour maps of the evaluation set for all abovementioned
scenarios. It has to be noted that the MAE is now taken as
the mean over the spatial axis, i.e., for each of the recon-
structed 261 GWL contour maps separately (whereas, with
the hydrographs, the MAE was taken as the mean over the
time axis for each reconstructed well). This was done be-
cause, in the application case, the focus is on the error of
a spatial reconstruction of GWL contours and not explicitly
on time series. Correspondingly, the maximum absolute er-
ror (maxAE) is the maximum over the spatial axis for each
of the reconstructed 261 GWL contour maps. We therefore
also refer to them as mean and maximum spatial reconstruc-
tion errors. Thus, the boxes in Fig. 7c show the variability
in the mean absolute error and maximum absolute error over
the 261 time steps.
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a, Reduction of GMW with redundant or low information
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Figure 7. (a) Location of removed groundwater monitoring wells (GMWs) in a 10 % (yellow) and 20 % (red) QR-based monitoring well
reduction (left map; panel ay), in a 10 % (light blue) and 20 % extension (center map, az), and in a combined reduction/extension in which
10 % and 20 %, respectively, of the monitoring wells were removed and replaced with wells at optimal locations (right map; panel a3).
(b) Cost function grid used for the GMN extension. (¢) Box plots show the mean and maximum absolute error of the reconstruction of the
216 GWL contour maps of the test set obtained with the mentioned GMN reduction/extension.
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On average, the model can reconstruct the GWL contour
maps with very high accuracy, with mean absolute errors far
below 1 cm. This seems very low compared to the reconstruc-
tion of the hydrographs. However, this is due to the fact that
the reconstruction of a large number of many similar values
(i.e. raster pixels) is much easier for the model, for the fol-
lowing two reasons: (i) there are many more training patterns
for each type of dynamics than with the hydrographs alone,
and (ii) the overall dynamics are reduced by the interpolation
itself, which smooths the data spatially and temporally. Tak-
ing these limitations due to spatially interpolated data into
account, it seems more reasonable to focus on the maximum
absolute error, which allows the identification of areas with
higher errors, where the model (with the existing data) cannot
produce reliable reconstructions and additional wells would
bring the most information.

When comparing the maxAE (Fig. 7c; right) for all sce-
narios, we see that a reduction in the network increases the
spatial reconstruction error by a factor of about 2 for 10 %
reduction and about 3 to 4 for 20 %. For comparison, the
gray box (100 %) shows the reconstruction errors with an un-
changed GMN (this error results from the fact that the model
is trained with the first 80 % of all time steps, but the recon-
struction is performed for the unknown 20 % of the evalua-
tion data set). An extension of the network by 10 % can con-
siderably reduce the spatial reconstruction error to about less
than two-thirds, while an extension by 20 % reduces it fur-
ther to 1/10 of the initial value. Most interestingly, the recon-
struction errors for the combined reduction/extension scenar-
ios with 90 %/10 % and 80 %/20 %, respectively (thus an un-
changed number of 480 wells in total), are slightly below
the straightforward GMN extension with 110 % (528 wells)
and 120 % (576 wells). To a lesser degree, this also applies
to the mean absolute errors, at least for the 80 %/20 % sce-
nario, which performs slightly better than an extension by
20 %, and considerably better than a 10 % extension. In prac-
tice, that means that, with a combined reduction/extension,
for example, sensors/data loggers that become available can
be used elsewhere at better locations. This reduces the instal-
lation costs of the additional wells and the operating costs of
the GMN and, moreover, performs about the same as or even
better than a pure extension.

4 Conclusions

This study investigated data-driven sparse sensing ap-
proaches based on the work of de Silva et al. (2021a), Clark
et al. (2019), and Manohar et al. (2018) and adapted them
to optimize an existing GLMN. The algorithm fits a tailored
basis to the training data, subsequently used in a QR decom-
position to rank the monitoring wells by importance based
on reconstruction performance. This approach allows us to
remove groundwater monitoring wells with low information
content if needed, equip monitoring wells with higher rank
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with higher quality sensors, or measure with a higher time
frequency. When using spatially continuous input data (by
interpolation or numerical simulation), the ranking is per-
formed according to the same scheme for all locations. This
rank can be used as a decision-making aid to search for lo-
cations for additional monitoring wells. We incorporated a
cost function to eliminate inaccessible locations from the site
selection process. Adjusting the cost constraint allows a spe-
cific adaptation to the individual problem definition.

Our results show that identifying redundant, low-ranking
monitoring sites would allow a drastic reduction of the mon-
itoring network, with a minor loss of information, compared
to a random reduction (which corresponds to a reduction
based on other criteria, as is often the case in practice). In
the case of a desired network extension, the reconstruction
quality can benefit from the additional removal of unsuitable
wells.

As in related previous studies (Clark et al., 2019; Manohar
et al., 2018), using the identity data basis (raw data with-
out dimensionality reduction) and the total number of avail-
able base modes yielded a lower reconstruction error for a
given number of wells compared to other basis mode types
and numbers. This is because no information is lost when
constructing a low-ranking approximation to the data. How-
ever, for larger data sets than the one used in this study, an
optimization without previous dimensionality reduction can
lead to impractically long computation times. Just as in the
work of Clark et al. (2019) and Manohar et al. (2018), a ran-
domized projection of the data in our study performed, on
average, only slightly worse than the raw data and may be
worthwhile for large data sets or multiple computational runs
due to lower computational costs. Even though the widely
used SVD basis gave the worst results for our data set, the
reconstruction errors are still lower than for a random net-
work optimization.

In addition to GLMN, this approach can also optimize
groundwater quality or multivariate monitoring networks. As
with all data-driven methods, the quality of the results de-
pends strongly on the availability of the input data (spatial
and primarily temporal). Since this approach relies on detect-
ing patterns in data and placing monitoring locations based
on those patterns, it benefits from large data sets. Therefore,
we see the main application of this technique in optimizing
monitoring networks of regional-scale groundwater systems,
where a comprehensive overview of the variability and quan-
tity of groundwater bodies and the assessment of long-term
changes in natural conditions is the monitoring objective.

Overall, we could demonstrate that modern data-driven
methods of sparse sensing are well suited for the applica-
tion to groundwater monitoring networks, as long as there is
a good historic data basis. The applied method can be used
for an optimization regarding the number of wells and their
location, for a network reduction and extension, or for both
combined. Using hydrographs (1D) as input data, the applied
approach allows an information-based assessment of an oper-
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ated monitoring network. The outcomes can be used to iden-
tify representative key wells for selecting expressive subnet-
works, equip the critical wells with improved data loggers, or
release installed sensors/loggers at redundant wells for more
suitable locations. The spatial dependency structures and the
sphere of influence of wells can be considered in optimizing
with two-dimensional input data, both for reduction and for
an extension of monitoring networks tailored to the dynam-
ics of the aquifer. Although optimized reduction can gener-
ally lead to greater cost efficiency, it should always be done
judiciously and in combination with expert knowledge of the
system.

Appendix A

Ranking:

1-47 (> 90%)

48-119 (90% - 76%)
120 - 239 (75% - 51%)
240 - 359 (50% -26%)
360 - 431 (25% - 11 %)
432 - 480 (< 10%)

@@ 00

Different Ranking
1D vs. 2D:
0-50
51-100
101 - 150
151 - 200
201 - 250
251 - 300
301 - 350
351 - 400
401 - 480

00000000

Figure Al. Comparison of QR-based ranking with 1D hydrograph data (left; panel aj), with 2D interpolated GWL contour maps (middle;
panel aj) and differences of rankings between 1D and 2D (right; panel a3).
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Figure A2. Stacked z-transformed hydrographs of monitoring wells. Rank 1-240.
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Figure A3. Stacked z-transformed hydrographs of monitoring wells. Rank 241-480.
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Abbreviations
cv Cross validation
GA Genetic algorithm
GLMN  Groundwater level monitoring network
GMN Groundwater monitoring network
GQMN  Groundwater quality monitoring network
GWL Groundwater level
GMW  Groundwater monitoring well
KGE Kling—Gupta efficiency
MAE Mean absolute error
maxAE Maximum absolute error
NSE Nash-Sutcliffe efficiency
R? Coefficient of determination here: squared
Pearson r
PCA Principal component analysis
POD Proper orthogonal decomposition

rBias Relative bias

rRMSE Relative root mean square error
RMSE  Root mean square error

SVD Singular value decomposition
URG Upper Rhine Graben

WFD Water Framework Directive
ND Nitrates Directive
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